论文部分内容阅读
分类算法一直以来都是数据挖掘领域的研究重点,朴素贝叶斯分类算法是众多优秀分类算法之一,但由于其条件属性必需独立,使得该算法也存在着一定的局限性。为了从另外一种角度来改进该算法,提高分类性能,提出了一种基于K-近邻法的局部加权朴素贝叶斯分类算法。使用K-近邻法对属性加权,找到最合适的加权值,运用加权后的朴素贝叶斯分类算法去分类,实验表明该算法提高了分类的可靠性与准确率。