论文部分内容阅读
目的随着计算机与人工智能的快速发展,视觉感知技术突飞猛进。然而,以深度学习为主的视觉感知方法依赖于大规模多样性的数据集,因此,本文提出了基于平行学习的视觉分析框架——平行视觉,它通过大量精细标注的人工图像来给视觉算法补充足够的图像数据,从而将计算机变成计算智能的"实验室"。方法首先人工图像系统模拟实际图像中可能出现的成像条件,利用系统内部参数自动得到标注信息,获取符合要求的人工图像数据;然后使用预测学习设计视觉感知模型,利用计算实验方法在人工图像系统生成的大量图像数据上进行各种实验,方便地研究复杂环