典型源相机分类算法性能研究

来源 :计算机应用 | 被引量 : 4次 | 上传用户:ssss426
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现有文献中的源相机分类算法很少讨论测试图像在受到轻微图像处理后算法性能的变化。利用支持向量机,对源相机分类算法的性能和鲁棒性进行了分析,比较了测试图像遭受处理前后分类算法的检测准确率,并研究了图像特征的鲁棒性。由于基于模式分类的算法通常需要精简特征个数以提高执行效率,因此,还讨论了精简模式下相机分类算法的性能以及特征选择对辨识算法鲁棒性的影响。
其他文献
为了研究循环流化床中气体-固体的分布规律,基于电容层析成像得到的二维断面浓度分布,利用一种线性差值算法,构建固体颗粒的三维浓度分布.三维图像的显示采用C++语言和Open G
针对同一场景红外图像与可见光图像的融合问题,提出了一种基于二代Curvelet变换与模块化主成分分析(MPCA)的图像融合新方法。首先对原始图像分别进行快速离散Curvelet变换,得到不同尺度和方向下的粗细尺度系数;根据红外图像与可见光图像的不同物理特性以及人类视觉系统特性,对粗尺度系数的选择,采用基于模块化主成分分析(MPCA)的融合规则,确定融合权值,而对不同尺度与方向下的细尺度系数的选择,