论文部分内容阅读
摘要 基于高等数学教学的严谨和完善,为解决高等数学教材中一元函数极限定义和多元函数极限定义的不一致性,提出了一个多元函数极限定义修改建议。
关键词 函数;极限;一致性
中图分类号 O172 文献标识码 A 文章编号 1673-9671-(2010)082-0163-01
《高等数学》是大学本科教学中的一门重要的基础课,微积分理论是这门课的主要内容。极限是微积分理论的基石,连续、导数和积分等等都是由它来定义;在教授《高等数学》下册有关多元函数极限、连续等内容和同学提问过程中,我们对比发现:一个一元函数在一点没有极限,而从二元函数角度考虑却是有极限的,即:一元函数和多元函数极限缺乏一致性。本文将对此问题进行认真讨论,并尝试对极限定义进行改进,让《高等数学》这门课程更加严谨完善。
1 问题提出
我们首先来对比同济第五版《高等数学》中,一元函数极限定义和多元函数极限定义(本文以二元函数极限为例):
定义1:设函数f (x)在点x0的某一去心领域内有定义。如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当满足不等式0<│x–x0│<δ时,对应的函数值f (x)都满足不等式
│f (x)–A│<ε
那么常数A就叫做函数f (x)当x→x0时的极限。
定义2:设二元函数f (p)=f (x,y)的定义域为D,p0(x0,y0)是D的聚点。如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当点(P0,δ)时,都有
│f (P)–A│=f (x,y)-A│<ε
成立,那么就称常数A为函数f (x,y)当(x,y)→(x0,y0)时的极限。
下面由上两定义来看下面两个例子,进行对比:
例1:y=f (x)=1,令定义域D={x│x∈Q}(这里Q表有理数,以下同),讨论。
例2:z=f (x,y)=1,D={(x,y)│x∈Q,y=0},讨论。
对于例1,由定义1知:因为不存在任何原点的去心领域,使得
f (x)在其上都有定义,从而得出不存在。对于例2,由定义2知:①(0,0)是D的聚点;②∀ε,δ=1,当δ)时,有
│f (x,y)–1<ε。从而。例1和例2中给出的虽一个是一元函数,一个是二元函数,但仔细分析容易发现:事实上,例2也是一个一元函数,只不过是例1的变形,与例1无本质区别,但却得出了不一致的结论。之所以出现这个情况,不难发现原因就在于两个定义的不一致性。能不能处理这个不一致性,值得探讨。
2 严谨的一元函数极限定义
首先,我们尝试修改一元函数极限定义。仔细对比例1和例2,所讨论极限结论之所以不同,直接原因在于二元函数极限是以所论极限点为聚点的基础上定义的,而一元函数极限的极限点必须是以其为中心的去心领域中函数都有定义。定义极限的先决条件很明显后者要比前者强多了。一个自然的想法,可不可以仿照多元函数对一元函数定义域上定义聚点。即:设ER,如果对于任意给定的δ>0,点x0的去心领域
内总有E中的点,则称x0是E的聚点。从而对一元函数极限重新定义如下:
定义3:设x0为f (x)定义域D的聚点,如果存在常数A,对于任意给定正数ε(不论它多么小),总存在正数δ,使得当x满足不等式0<│x–x0│<δ且x∈D时,对应的函数值f (x)都满足不等式
│f (x)–A│<ε
那么常数A就叫做函数f (x)当x→x0时的极限。
有了以上一元函数极限的重新定义,容易得到例1的极限存在,且。至此,问题似乎解决了;诚然,就例1和例2来说,我们取得
了极限定义的一致性。但仔细研究同济第五版《高等数学》上册连续、可导和积分等各处于极限有关的定义,进一步综合我们的教学实际,发现诸多问题,主要问题如下:
1)在定义3下,函数极限不存在左右之分,由此也不存在左右连续,左右可导等等这些同济第五版《高等数学》上册中大家熟知的很成熟的概念。
2)产生一些难以直观理解的结果。如:函数的连续。在定义3下,例1中函数在有理点是连续的,即这个函数在其定义域上处处连续。此结论难以令人在直观上接受,从而能否让学生接受,值得怀疑。且例2同样存在这个问题,由此启发我们考虑二元函数极限定义的改造。
3)定义3除了解决类似于例1和例2中极限问题,对教学和理论,尤其是教学,没有大的帮助,存在隐患。
事实上,一元函数极限的定义是非常严谨和完善的,是经过自牛顿和莱布尼兹发明微积分理论以及柯西和维尔斯特拉斯的工作之后千锤百炼的结果,不能随便轻易改动的。
3 完善多元函数极限
3.1 两个初步修改方案
由以上讨论不难发现一元函数的微积分极限理论非常经典,从一元函数方面不能解决问题,我们转向二元函数。总结几位同行讨论,对上面所出现问题的解决的初步想法是,主要有以下两种考虑:
①参照定义1,重新定义多元函数极限(以二元函数为例)。
定义4:设二元函数f (P)=f (x,y)在P0(x0,y0)某一去心领域有定义。如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当点δ)时,都有
│f (P)–A│=│f (x,y)–A│<ε
成立,那么就称常数A为函数f (x,y)当(x,y)→(x0,y0)时的极限。
②多元函数极限是多元函数极限,一元函数极限是一元函数极限,规定不能把一元函数看成多元函数。
仔细分析发现两种想法都存在问题。针对①,我们举例:
例3:z=f (x,y)=1,D={(x,y)│x∈R,y=0},讨论。
由于不存在任何点(0,0)的去心领域,使得f (x,y)在其上都有定义,从而由定义3得出不存在,进一步可得出不连续。而事实上例3
中函数的图像可以容易做出来是一条连续的直线,这与一元函数的连续性相悖,函数极限的一致性问题仍然难以解决。针对②,稍加分析不难发现,这种考虑是在回避问题,并没有解决问题。
3.2 较理想方案
由以上讨论,不难看出极限不一致性这个问题的解决,没有想象的那么简单。通过认真研读同济第五版《高等数学》上、下两册和查找相关资料(如:[2]和[3]),同事间进行深入讨论,从科研和教学上进行反复论证和研究。还是从例1和例2入手,由定义2,例2中函数在定义域内任意点都有极限,且进一步都连续;但是直观上不容易理解,且与例1相悖。近一步分析,根源在聚点的定义。我们来看看同济第五版《高等数学》下册第2页中聚点的定义:如果对于任意给定的δ>0,点P的去心领域内总有E中的点,则称P是E的聚点。例2中定义域正是由于以上聚点定义,从而每个点都是聚点,进一步由定义2得出极限存在且连续。如果我们给出强聚点的定义:如果点P是E的聚点,且E中存在一条经过P的曲线,则称P是E的强聚点。我们可以得到以下较理想的方案:即给二元函数极限重新定义为:
定义5:设二元函数f (P)=f (x,y)的定义域为D,点P0(x0,y0)是D的强聚点。如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当点δ)时,都有
│f (P)–A│=│f (x,y)–A│<ε
成立,那么就称常数A为函数f (x,y)当(x,y)→(x0,y0)时的极限。
不难发现,以上强聚点概念完全可以推广到其他多元函数情况,从而进一步可获多元函数极限定义。对于以上多元函数极限的重新定义,有的老师可能担心,会不会出现问题,对同济第五版《高等数学》下册的教学影响大不大。事实上,仔细研读全书,只有第一章第一节二重极限和二元函数连续的定义中是以点为聚点定义的,从而新定义对原书影响可以说很小。但概念严谨和完善了,且较好地解决了一元函数和多元函数极限缺乏一致性的问题。
参考文献
[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2002.
[2]李成章,黄玉民.数学分析[M].科学出版社,1999.
[3]陈省身,陈维桓.微分几何讲义(第二版)[M].北京大学出版社,2001.
关键词 函数;极限;一致性
中图分类号 O172 文献标识码 A 文章编号 1673-9671-(2010)082-0163-01
《高等数学》是大学本科教学中的一门重要的基础课,微积分理论是这门课的主要内容。极限是微积分理论的基石,连续、导数和积分等等都是由它来定义;在教授《高等数学》下册有关多元函数极限、连续等内容和同学提问过程中,我们对比发现:一个一元函数在一点没有极限,而从二元函数角度考虑却是有极限的,即:一元函数和多元函数极限缺乏一致性。本文将对此问题进行认真讨论,并尝试对极限定义进行改进,让《高等数学》这门课程更加严谨完善。
1 问题提出
我们首先来对比同济第五版《高等数学》中,一元函数极限定义和多元函数极限定义(本文以二元函数极限为例):
定义1:设函数f (x)在点x0的某一去心领域内有定义。如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当满足不等式0<│x–x0│<δ时,对应的函数值f (x)都满足不等式
│f (x)–A│<ε
那么常数A就叫做函数f (x)当x→x0时的极限。
定义2:设二元函数f (p)=f (x,y)的定义域为D,p0(x0,y0)是D的聚点。如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当点(P0,δ)时,都有
│f (P)–A│=f (x,y)-A│<ε
成立,那么就称常数A为函数f (x,y)当(x,y)→(x0,y0)时的极限。
下面由上两定义来看下面两个例子,进行对比:
例1:y=f (x)=1,令定义域D={x│x∈Q}(这里Q表有理数,以下同),讨论。
例2:z=f (x,y)=1,D={(x,y)│x∈Q,y=0},讨论。
对于例1,由定义1知:因为不存在任何原点的去心领域,使得
f (x)在其上都有定义,从而得出不存在。对于例2,由定义2知:①(0,0)是D的聚点;②∀ε,δ=1,当δ)时,有
│f (x,y)–1<ε。从而。例1和例2中给出的虽一个是一元函数,一个是二元函数,但仔细分析容易发现:事实上,例2也是一个一元函数,只不过是例1的变形,与例1无本质区别,但却得出了不一致的结论。之所以出现这个情况,不难发现原因就在于两个定义的不一致性。能不能处理这个不一致性,值得探讨。
2 严谨的一元函数极限定义
首先,我们尝试修改一元函数极限定义。仔细对比例1和例2,所讨论极限结论之所以不同,直接原因在于二元函数极限是以所论极限点为聚点的基础上定义的,而一元函数极限的极限点必须是以其为中心的去心领域中函数都有定义。定义极限的先决条件很明显后者要比前者强多了。一个自然的想法,可不可以仿照多元函数对一元函数定义域上定义聚点。即:设ER,如果对于任意给定的δ>0,点x0的去心领域
内总有E中的点,则称x0是E的聚点。从而对一元函数极限重新定义如下:
定义3:设x0为f (x)定义域D的聚点,如果存在常数A,对于任意给定正数ε(不论它多么小),总存在正数δ,使得当x满足不等式0<│x–x0│<δ且x∈D时,对应的函数值f (x)都满足不等式
│f (x)–A│<ε
那么常数A就叫做函数f (x)当x→x0时的极限。
有了以上一元函数极限的重新定义,容易得到例1的极限存在,且。至此,问题似乎解决了;诚然,就例1和例2来说,我们取得
了极限定义的一致性。但仔细研究同济第五版《高等数学》上册连续、可导和积分等各处于极限有关的定义,进一步综合我们的教学实际,发现诸多问题,主要问题如下:
1)在定义3下,函数极限不存在左右之分,由此也不存在左右连续,左右可导等等这些同济第五版《高等数学》上册中大家熟知的很成熟的概念。
2)产生一些难以直观理解的结果。如:函数的连续。在定义3下,例1中函数在有理点是连续的,即这个函数在其定义域上处处连续。此结论难以令人在直观上接受,从而能否让学生接受,值得怀疑。且例2同样存在这个问题,由此启发我们考虑二元函数极限定义的改造。
3)定义3除了解决类似于例1和例2中极限问题,对教学和理论,尤其是教学,没有大的帮助,存在隐患。
事实上,一元函数极限的定义是非常严谨和完善的,是经过自牛顿和莱布尼兹发明微积分理论以及柯西和维尔斯特拉斯的工作之后千锤百炼的结果,不能随便轻易改动的。
3 完善多元函数极限
3.1 两个初步修改方案
由以上讨论不难发现一元函数的微积分极限理论非常经典,从一元函数方面不能解决问题,我们转向二元函数。总结几位同行讨论,对上面所出现问题的解决的初步想法是,主要有以下两种考虑:
①参照定义1,重新定义多元函数极限(以二元函数为例)。
定义4:设二元函数f (P)=f (x,y)在P0(x0,y0)某一去心领域有定义。如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当点δ)时,都有
│f (P)–A│=│f (x,y)–A│<ε
成立,那么就称常数A为函数f (x,y)当(x,y)→(x0,y0)时的极限。
②多元函数极限是多元函数极限,一元函数极限是一元函数极限,规定不能把一元函数看成多元函数。
仔细分析发现两种想法都存在问题。针对①,我们举例:
例3:z=f (x,y)=1,D={(x,y)│x∈R,y=0},讨论。
由于不存在任何点(0,0)的去心领域,使得f (x,y)在其上都有定义,从而由定义3得出不存在,进一步可得出不连续。而事实上例3
中函数的图像可以容易做出来是一条连续的直线,这与一元函数的连续性相悖,函数极限的一致性问题仍然难以解决。针对②,稍加分析不难发现,这种考虑是在回避问题,并没有解决问题。
3.2 较理想方案
由以上讨论,不难看出极限不一致性这个问题的解决,没有想象的那么简单。通过认真研读同济第五版《高等数学》上、下两册和查找相关资料(如:[2]和[3]),同事间进行深入讨论,从科研和教学上进行反复论证和研究。还是从例1和例2入手,由定义2,例2中函数在定义域内任意点都有极限,且进一步都连续;但是直观上不容易理解,且与例1相悖。近一步分析,根源在聚点的定义。我们来看看同济第五版《高等数学》下册第2页中聚点的定义:如果对于任意给定的δ>0,点P的去心领域内总有E中的点,则称P是E的聚点。例2中定义域正是由于以上聚点定义,从而每个点都是聚点,进一步由定义2得出极限存在且连续。如果我们给出强聚点的定义:如果点P是E的聚点,且E中存在一条经过P的曲线,则称P是E的强聚点。我们可以得到以下较理想的方案:即给二元函数极限重新定义为:
定义5:设二元函数f (P)=f (x,y)的定义域为D,点P0(x0,y0)是D的强聚点。如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当点δ)时,都有
│f (P)–A│=│f (x,y)–A│<ε
成立,那么就称常数A为函数f (x,y)当(x,y)→(x0,y0)时的极限。
不难发现,以上强聚点概念完全可以推广到其他多元函数情况,从而进一步可获多元函数极限定义。对于以上多元函数极限的重新定义,有的老师可能担心,会不会出现问题,对同济第五版《高等数学》下册的教学影响大不大。事实上,仔细研读全书,只有第一章第一节二重极限和二元函数连续的定义中是以点为聚点定义的,从而新定义对原书影响可以说很小。但概念严谨和完善了,且较好地解决了一元函数和多元函数极限缺乏一致性的问题。
参考文献
[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2002.
[2]李成章,黄玉民.数学分析[M].科学出版社,1999.
[3]陈省身,陈维桓.微分几何讲义(第二版)[M].北京大学出版社,2001.