论文部分内容阅读
基于内容的图像检索是近年来计算机视觉领域的重要方向之一,如何快速准确地匹配视觉信息内容是图像检索最关键的部分。目前大多数检索方法采用BOF(bag of features)算法,该算法的检索精度较低,且运行速度较慢。提出了一种新的匹配方法,提高检索精度的同时有效减少了检索时间。本算法利用特征点的四个相对独立的角度对其进行分类,可大幅减少需要比较的特征算子的数量,并对每一分类中的特征点使用k-means算法聚类,得到若干个聚类中心。本方法对每一聚类的特征点进行汉明编码,并采用倒排表的方式进行信息存储。