论文部分内容阅读
针对城市交通流数据修复问题,提出一种基于图卷积网络和多头自注意力机制的自注意力图自编码器模型。该模型包括基于拓扑图结构和图信号捕获交通流时空关联性的STGCN(Spatial-temporal Graph Convolutional Networks)网络。在该网络中使用LSTM(Long Short-Term Memory)网络学习数据中时序规律,通过注意力网络计算道路自注意力及一阶临近道路注意力系数,用图卷积网络对图信号重组,达到对缺失数据的精确修复。同时,采用多头自注意力网络计算数据的注意力权值并对