论文部分内容阅读
为解决目标跟踪中目标遮挡、背景复杂等问题,提出一种基于多模态数据的目标跟踪算法。首先对各个模态数据进行像素级融合,以减少单模态数据中信息不足对跟踪结果的影响。然后对融合后的图像提取不同的特征进行滤波,接着将滤波得到的响应图进行决策级融合,以解决因单个模型漂移导致的模型跟踪失败问题。最后根据融合后的响应图的峰值得到跟踪结果。此外,在跟踪过程中加入遮挡检测模块,进一步增强模型鲁棒性。在普林斯顿跟踪基准上对算法进行评估,结果表明,与其他主流算法相比,基于多模态数据的目标跟踪算法在目标遮挡类视频上跟踪精度提