论文部分内容阅读
以冶炼烟气制酸SO2转化率为研究对象,针对单一BP或RBF神经网络,预测SO2转化率存在的过学习或网络速度收敛慢的问题,利用最优均方误差加权融合算法对两种单一神经网络进行融合,从而构建更优的SO2转化率预测模型.仿真结果表明:最优均方误差加权融合模型避免了单一模型信息的缺失,实现了信息互补,从而提高了SO2转化率预测精度.