蒙汉神经机器翻译研究综述

来源 :计算机科学 | 被引量 : 0次 | 上传用户:yd126523
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
机器翻译是利用计算机将一种语言转换成另一种语言的过程,凭借着对语义的深度理解能力,神经机器翻译已经成为目前主流的机器翻译方法,在众多拥有大规模对齐语料的翻译任务上取得了令人瞩目的成就,然而对于一些低资源语言的翻译任务效果仍不理想.蒙汉机器翻译是目前国内主要的低资源机器翻译研究之一,蒙汉两种语言的翻译并不简单地是两种语言的相互转换,更是两个民族之间的交流,因此受到国内外的广泛关注.文中主要对蒙汉神经机器翻译的发展历程和研究现状进行阐述,随后选取了近年来蒙汉神经机器翻译研究的前沿方法,包括基于无监督学习和半监督学习的数据增强方法、强化学习方法、对抗学习方法、迁移学习方法和预训练模型辅助的神经机器翻译方法等,并对这些方法进行了简要介绍.
其他文献
神经机器翻译模型的训练效果在很大程度上取决于平行语料库的规模和质量.除了一些常见语言外,汉语与小语种间高质量平行语料库的建设一直处于滞后状态.现有小语种平行语料库多采用自动句子对齐技术利用网络资源构建而成,在文本质量和领域等方面有诸多局限性.采用人工翻译的方式可以构建高质量平行语料库,但是缺乏相关经验和方法.文中从机器翻译实践者和研究者角度出发,介绍了经济高效的人工构建小语种平行语料库的工作,包括其总体目标、实施过程、流程细节和最后结果.在构建过程中尝试并积累了各种经验,形成了小语种到汉语平行语料库构建方