论文部分内容阅读
机器翻译是利用计算机将一种语言转换成另一种语言的过程,凭借着对语义的深度理解能力,神经机器翻译已经成为目前主流的机器翻译方法,在众多拥有大规模对齐语料的翻译任务上取得了令人瞩目的成就,然而对于一些低资源语言的翻译任务效果仍不理想.蒙汉机器翻译是目前国内主要的低资源机器翻译研究之一,蒙汉两种语言的翻译并不简单地是两种语言的相互转换,更是两个民族之间的交流,因此受到国内外的广泛关注.文中主要对蒙汉神经机器翻译的发展历程和研究现状进行阐述,随后选取了近年来蒙汉神经机器翻译研究的前沿方法,包括基于无监督学习和半监督学习的数据增强方法、强化学习方法、对抗学习方法、迁移学习方法和预训练模型辅助的神经机器翻译方法等,并对这些方法进行了简要介绍.