论文部分内容阅读
本文提出一种基于ESEquivPS(扩展支持度相等性剪枝策略)的封闭频繁项集挖掘算法ECFIMA。该算法采用深度优先和广度优先相结合的策略访问搜索空间,使用垂直位图向量格式存储表示项集和事务数据库,同时利用基本剪枝策略、相等性剪枝策略、扩展支持度相等性剪枝策略1和扩展支持度相等性剪枝策略2进行候选空间剪枝,并采用多种不同特性的测试数据集进行实验。实验结果表明,ECFIMA算法是一种高效的封闭频繁项集挖掘算法,在多种测试数据集上性能都优于CHARM算法,尤其是在拥有大量长的封闭频繁项集的测试数据集上,效率比