论文部分内容阅读
随着大数据时代的到来,网络舆情数据呈现信息量大和领域覆盖广等特征。面对复杂的网络舆情数据时,传统单一模型预测能力有限,不能对舆情趋势进行有效预测。针对此问题,提出一种基于经验模态分解-自回归(EMD-AR)改进的组合模型——EMD-ARXG模型,应用于复杂网络舆情的预测。该模型利用经验模态分解算法对时间序列进行分解,然后通过自回归模型对分解后的时间序列进行各自趋势拟合,建立子模型。最后再对各个子模型进行重构,完成建模。另外,在利用自回归(AR)模型拟合过程中,为了减少拟合误差,采用极限梯度提升算法对