Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation

来源 :数学年刊B辑(英文版) | 被引量 : 0次 | 上传用户:mnbvc1c2c3
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The authors study the Lagrangian stability for the sublinear Duffing equations(x)+e(t)丨x丨α-1x = p(t)with 0<α<1,where e and p are real analytic quasi-periodic functions with frequency ω.It is proved that if the mean value of e is positive and the frequency ω satisfies Diophantine condition,then every solution of the equation is bounded.
其他文献
Let n>1 and B be the unit ball in n dimensions complex space Cn.Suppose that φ is a holomorphic self-map of B and ψ ∈ H(B)with Ψ(0)= 0.A kind of integral ope
In this paper the authors consider the bundle of affinor frames over a smooth manifold,define the Sasaki metric on this bundle,and investigate the Levi-Civita c
今天是周末,宁宁计划和妈妈一起去电影院看电影.这不,宁宁一起床便缠着妈妈问哪一部电影比较好看.等到选好电影了,宁宁和妈妈却在选择观影座位上犯了难.因为手机App上推荐的
期刊
In this paper the authors derive regular criteria in Lorentz spaces for Leray-Hopf weak solutions v of the three-dimensional Navier-Stokes equations based on th