论文部分内容阅读
针对传统卷积神经网络CNN(Convolutional Neural Networks)在训练或学习时只利用图像的灰度信息,丢失了颜色信息的问题,提出一种基于多通道卷积神经网络来提取特征的方法。该算法对于每一个颜色通道分别学习一个多层卷积神经网络,并且在输出层通过全连通的神经网络进行融合。算法首先建立三个多层卷积神经网络来学习图像三个通道(RGB,HSV,Lab等)的特征;然后将三个颜色通道的特征赋予不同的权值(权值和为1)后进行融合,得到样本的特征;最后通过一个全连通的神经网络得到分类结果。实验结