论文部分内容阅读
为处理机动目标被动跟踪中的非线性非高斯问题,提出了一种基于粒子滤波器的交互多模型(IMM)多观测站跟踪方法。使用转弯率建立了被动跟踪模型,用“蛙跳”处理方式来提高多站被动跟踪问题的可观测性,结合被动跟踪模型,利用非线性粒子滤波方法,对IMM算法进行了改进,提高了对IMM混和密度的近似程度,通过被动跟踪仿真实例,同时使用IMM粒子滤波器(IMM-PF)与IMM扩展卡尔曼滤波器(IMM-EKF)进行跟踪仿真,分析了轨迹跟踪性能,利用均方根误差比较了误差性能。仿真结果表明,与IMM-EKF相比,IMM-PF具有