用高考试题审视课堂基本体验的学与教

来源 :数学教学通讯·高中版 | 被引量 : 0次 | 上传用户:liucheng333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  [摘 要] 借用高考试题的解析来例说基本体验的学与教,引导学生领悟意象,激发学生的潜能,让学生体会基本体验的意义和养成逻辑思维的习惯,让学习变得愉快与有效.
  [关键词] 高考试题;审视;基本体验;学与教
  高中数学课程标准(修订版讨论稿)指出:通过高中数学课程学习,获得进一步学习及未来发展必需的数学的基础知识、基本技能、基本思想、基本活动经验(即基本体验),教育部2016年高考命题工作会议精神指出:数学不仅考查学生的基本知识,而且更要考查基本思想和基本体验. “基本体验”是非常好理解的自然语言,但作为特定数学述语,它可能是一种意象感悟,也可能蕴涵着丰富的意涵,在教学中真正把基本体验落地生根,必须对基本体验性教学进行研究与实践,笔者这几年做了一些尝试,现用2017年高考试题第(Ⅱ)卷中第20题,文、理同题的解析几何的解与析来例说基本体验性教学.
  教师选择课堂基本体验的学与教,能形成和发展以数学抽象、逻辑思维、数学建模、直观想象、数学运算、数据分析为要素的数学核心素养,它也是数学教育的核心目标. 当然教师不仅要清晰认识课堂基本体验学与教的意义,而且也要理顺学与教的相互关系,更要了解教育对象基本体验的现状与开发潜力,设计专门课程,选取合适的素材,来激发学生参与学与教的积极性和主导审视课堂基本体验的学与教.
  基本体验的学包括:阅读体验、像图体验、运算体验和讨论体验,基本体验的教包括:调查和观察了解学生基本体验水平,选择合适的课题,设计体验课,组织体验性教学. 调查和观察了解学生基本体验水平,不能通过问卷形式进行,而是通过观察学生解题痕迹和参与问题讨论表述来判断学生基本体验水平.
  唯有依靠学生基本体验,引导学生感悟问题的意象,画图分析,分类探究的“学”,才是最接地气的学法,才能把学生骨子里的潜能开发出来;唯有知晓学生基本体验,灵感源于研讨的课堂,源于学生潜能真实感悟的“教”,才是最有效的教法.下面介绍就2017年高考数学第(Ⅱ)卷中第20题的研讨性课而设计的体验学与教. 选择高二理科班,提前把试题打印发给学生,学生单独解答,教学时先由学生分组研讨,组内形成共识,然后集中进行“汇议交锋”,最后由主持人进行总结陈述.下面是体验学与教(2课时)的纪实:
  主持人:今天由我们第A组负责组织研讨课,今天研讨主题是基本体验,根据规则首先由B组推荐人汇报B组研讨成果,现在我把讲台让给B组的张三同学.
  张三:先看幻灯片:设O为坐标原点,动点M在椭圆C: y2=1上,过M作x轴的垂线,垂足为N,点P满足=.
  (1)求点P的轨迹方程;
  (2)设点Q在直线x=-3上,且·=1,证明:过点P且垂直于OQ的直线l过C的左焦点F.
  我们组根据以往的经验,第(1)问用“驴拉磨子方法”求点P的轨迹;第(2)问用同一法与向量结合来证明. 下面由我讲解,我的学习搭档张一板书.
  (教师观察,学生体验同一法证明的过程是否符合老师讲的同一法,还观察学生体验通过·=0,·=1及x y=2得到-3x1 ny1=3的过程.)
  张三:主持人,我们B组代表解法是课堂老师上常讲方法,关键是体验向量的运算方法. 现在我把讲台还给主持人.
  主持人:刚才B组的张三同学根据经验,体验了用驴拉磨子的方法求轨迹,使用同一法结合向量运算,这与高考解答的吻合度过高,但B组补充的·=3,即得-3x1 ny1=3是有创新的!下面由C组推荐的李四同学汇报C组代表解法,现在把讲台交给李四同学.
  李四:我们组的代表解法,第(1)问设点Mx1,±,根据=直接找到P(x,y)与M的坐标之间的关系,求出点P的轨迹,第(2)直接利用直线方程的相关知识解决问题,下面由我讲解,学习搭档李三板书. 附解答:
  (1)设P(x,y),因为M在C上,可设Mx1,±,则N(x1,0),
  =(x-x1,y),=0,±,由=,即得
  x=x1,y=±,從而得y=±,
  故P的轨迹方程是x2 y2=2.
  (教师观察,学生体验设点M注意到±号及过渡变量x1的习惯写法,体会“设”、“可设”、“则”分别出现在点P,M,N前面的含义.)
  (2)设Q(-3,t),P(x1,y1),且x y=2,=(x1,y1),=(-3-x1,t-y1),由·=1,得x1(-3-x1) y1(t-y1)=1,即-3x1 ty1=x y 1=3,下面对t进行分类讨论:
  (Ⅰ)若t≠0时,kOQ=-,则直线l的方程为y-y1=(x-x1),
  整理,得-ty 3x=-ty1 3x1=-3,直线l的方程为3x-ty 3=0,
  即x=y-1恒经过点F(-1,0).
  (Ⅱ)若t=0时,则x=-1,即直线l:x= -1,经过点F(-1,0),
  综上所述,直线l过C的左焦点F.
  (教师观察,学生体验对参量t的分类讨论的处理过程,学生怎样处理直线3x-ty 3=0恒过定点(-1,0),是否曾联想了直线方程的点斜式形式或关于t的一元一次方程有多解的条件.)
  李三(C组):我想补充一点,我们组同学对-3x1 ty1=3是这样处理的,即对y1进行讨论:
  若y1≠0(x1≠-1)时,t=,kOQ=-=-,直线l的方程是
  y=(x-x1) y1=(x 1),
  所以直线l经过C的左焦点F(-1,0);
  若y1=0时,x1=-1,以下与上述相同.
  李四:我们组代表解法,是传统做法,主要突出数学运算能力和利用题设条件基本活动经验.现在把讲台交给主持人.
  主持人:刚才C组李四同学应用基础知识和基本体验,选择简单变换,也非常简捷地解决了问题. 下面由D组推荐的王五同学汇报D组代表解法.   王五:我们组代表解法,第(1)问利用椭圆的参数方程比较简洁,第(2)問中直线PF的平行线AR实际是点Q向圆O:x2 y2=的切点弦的方程,这样求直线l的方程就比较简单了. 附解答:
  (1)因为点M在椭圆C上,设M(cosθ,sinθ)(0≤θ<2π),P(x,y),则
  N(cosθ,0),=(x-cosθ,y),=(0,sinθ),由=,得
  x=cosθ,y=sinθ,(θ为参数,0≤θ<2π),消去参数θ即得P的轨迹方程是x2 y2=2.
  (教师观察,学生体验设点M的参数坐标,学生是否理解θ的任意性和只须取[0,2π)的范围,还观察学生体验消参θ的方法.)
  (2)根据向量数量积的几何意义,·=(cosθ)=1,因为=,PA=cosθ=,则=,点A的轨迹为x2 y2=.
  设A(x1,y1),R(x2,y2),Q(-3,t),则以点A为切点的圆O的切线方程是x1x y1y=. 因为A(x1,y1)在切线AQ上,则-3x1 ty1=③,
  ③式说明了点A在直线l′:-3x ty=上,同理点R(x2,y2)也在直线l′上,故点Q的切点弦方程为l′:-3x ty=,联立y=0,-3x ty=, 得x=-,y=0,即G-,0.
  由AG∥PF,则==,所以OF=1,即F(-1,0).
  所以直线l经过C的左焦点F(-1,0).
  (教师观察,学生体验用统数学运算手腕得到直线l′的方程的过程及处理思想,学生是怎样找到了切点弦所在的直线l′就是直线l的平行线.)
  王五(D组):我想补充,设过点Q(-3,t)的一束动直线与x2 y2=相交于点E(x3,y3),D(x4,y4),DE的中点为K(,),则x3 x4=2,y3 y4=2. 因为D,E均在圆x2 y2=上,所以x y=,x y=,两式相减,并分解因式,得(x3-x4) (y3-y4)=0,即知,=(x3-x4,y3-y4)与向量n=(,-)平行.
  又因为=( 3,-t)也与向量n=(,-)平行(选择向量运算减少讨论),于是·( 3) ·(-t)=0,即得到点K的轨迹方程为x2 y2 3x-ty=0(x2 y2≤),两圆方程相减,即得到直线AR的方程3x-ty=.
  (教师观察,学生体验使用向量而非斜率相等,成功回避了对的讨论,学生是怎样通过图像体验到l′就是两曲线(圆和圆弧)的公共弦.)
  王五:各位同学,根据活动规则我们D组汇报完毕,现在把讲台还给主持人.
  主持人:我做总结陈述,我们知道解析几何,它的第一性东西首先是几何,第二性东西才是代数,如果各类解法构成了数学皇冠,那么平面几何是数学皇冠上的明珠,只有应用了平面几何知识解决了问题,才感觉找到了问题的本质,学习才有成就感. 由研讨中出现的·=3,知道在上的射影是OA,下面就转化成平面几何问题,OP=,PA=,OA⊥AQ,PL⊥OQ,OQ=3,先看一般情形(图5(1)(2)):
  因为Rt△OLF∽Rt△ONQ,所以=,所以ON·OF=OL·OQ,
  因为Rt△OLP∽Rt△OAQ,所以=,所以OP·OA=OL·OQ,
  所以ON·OF=OP·OA,所以OF===1,
  所以F是椭圆C的左焦点. 特殊情形时,易证OF=1.
  (教师观察,学生体验平面几何的方法进行证明,但学生进行不下去了,笔者通过微信联系平面几何高手西安交通大学附属中学金磊老师做了点拨,感谢金磊老师的帮助!)
  教师:今天研讨活动非常成功,老师既在观察同学们的体验性“学”,也在反思教师的体验性“教”. 体验学与教正如《包法利夫人》中写到“灵魂丰盈无比,如光华泻地,化成白纸黑字,却是一片惨白”,让我们共同努力搞好体验学与教.
其他文献
我一直期待着这样一款产品,能够真正代表中围制造的汽车产品,能够与外资品牌硬打的产品。  WEY的两款车型不差,GS8、CS95不差,但它们仍旧没有和同级别外资品牌车型针锋相对的勇气,为什么这么说?看售价就知道了。  现在吉利做到了,领克01做到了,15.88万~20.28万元的价格,没有什么所谓的错位竞争,在全新一代ix35以12万~l6万元的价格,来和自主品牌贴身肉搏的时候,中国制造也勇敢地朝着
GL8 Avenir的问世让我们看到了别克打入高端市场的决心,君越Avenir则是别克的又一剂强心针。作为别克轿车的旗舰产品,它却有着不错的性价比。  论气场  君越Ave nir车身采用了专属的伯爵紫配色,加之超过5m的车长,让它的贵族气质毫无保留地释放出来。别说在B级车市场,君越Avenir在C级车市场上,这气场都不输给其他车型。不同于奔驰的AMG或宝马的M等套件,君越Avenir的套件并不明
当我们熟悉的德系三强BBA陆续推出自己首款纯电动产品的时候,这便预示着全球电气化的步伐已提速,产品将很快落地,留给那些“抢跑”的新势力造车们时间可不多了。  敲钟人是淮?  客观讲,随着2019年奥迪、奔驰、本田等一线品牌在国内外推出自己的纯电车型的时候,消费者会不自然的与现有新势力造车进行比较,当基本性能参数相差无几的时候,品牌忠诚度与影响力、最终的售价与售后保障将直接影响购买意愿,此时市场的天
最近,刷爆汽车圈的新闻只有一条——吉利集团耗资约90亿美元收购戴姆勒股份公司9.69%具有表决权的股份,从此吉利帝圈初见端倪。  一波三折  在2010年耗资18亿美元吞下瑞典汽车巨头沃尔沃,2017年又耗资12亿元人民币(约合1.8亿美元)取得马来西亚宝腾49.9%的股份后,吉利就有意戴姆勒(主要看中旗下梅赛德斯奔驰乘用车业务),并在2017年11月双方进行了接触,吉利希望以最多45亿美元收购戴
日本人天生就是空间利用方面的高手,因此日本品牌的各级别车型都有着赶超同级的空间利用率。这样的优势在MPV车型上变得尤为突出,本田奥德赛就是最好例证,现在,这个超强的奶爸车又一次进化了,还是增配不提价的那种。  坐享时光  说到奥德赛,一般人心里想到的标签就基本是“奶爸车”,一款能满足二胎家庭需求的MPV在空间表现方面自然不会差。为了更進一步地提升享受的可能,新奥德赛为第2排乘客增配了航空头枕和中置
[摘 要] 具备问题意识才有可能具备创造性与创新能力. 陶行知先生早在30年代就提出过创造始于问题的观点. 因此,教师应将唤醒学生问题意识、发展学生创新能力始终作为数学教学中的重要课题进行研究与探讨.  [关键词] 问题意识;情境;学生  学生的学习大多都是在没有问题中度过的,事实上,这样的没有问题并不是学生学习中不存在问题,而是学生提不出问题,问不出问题,这种现象的产生源自于学生问题意识的严重缺
[摘 要] 核心素养培育的背景下,高中数学教师的第一要务就是认识学生. 认识学生有两点基本内涵:一是认识学生意味着教师要研究学生的学习过程,二是认识学生意味着关注学生的情感. “充分条件与必要条件”教学中,教师基于教学经验,对学生认识充分条件与必要条件有一个准确的把握,认定学生基于生活实例去理解充分与必要两个概念更加合适. 从核心素养落地的角度来看,从生活实例向数学概念转变,对应着数学抽象;对生活
[摘 要] 高考数学题的创新响应了时代的号召,在改革发展的时代大背景下,立足新课标理念,评析了近三年典型高考全国卷理科数学创新型试题的四大类型:立德树人型、趣味逻辑型、高等背景型、阅读理解型,通过列举近三年典型高考全国卷理科数学试题,对各类型试题的特点做了分类分析,整体把握了高考试题的创新点.  [关键词] 高考数学;创新型试题;类型及特点  习近平总书记在全国两会重要讲话中提出“三个第一”的重要
[摘 要] 概念在具体情境中抽象,知识在学科间深度融合,性质在学科内类比,思想在形与数间转化,向量知识使物理和数学、几何与代数完美结合. 因此在向量教学中要交给学生研究问题的方法、拓展学生获得知识的渠道.使学生在思考中发展自主能力、在交流中提升表达能力、在学习中形成数学核心素养.  [关键词] 融合;抽象;类比;运算  课程内容分析  1. 教材分析  向量是近代数学中重要和基本的概念之一,有深刻
挑战者  当我第一次看见AMG GT Coupe这个名字的时候,我对其并没有任何兴趣,因为我想它只不过是辆4门跑车罢了。但在我经过一番研究后发现,它并不只是在AMG GT基础上加俩门那么简单,它足可以挑战Panamera在大型豪华轿跑这一细分市场的王者地位。  大有不同  新车外形方面依然延续着AMG GT圆润而又富有力量感的造型风格,前脸的的直瀑式进气格栅与AMG GT整体轮廓一样,巨大的三叉星