论文部分内容阅读
导线或电缆不仅是高效的电磁干扰接收天线,也是高效的电磁干扰辐射天线。互连导线间的串扰是一种典型的电磁兼容问题。为了达到更好的电磁兼容预测效果,提出了基于支持向量机(SVM)的预测算法。算法以结构风险最小化为原则,比以经验风险最小化为原则的传统神经网络性能更优。利用遗传算法优化预测模型的关联参数,可以进一步提高计算效率和精度。实验结果表明利用SVM算法对导线串扰预测的误差最小。通过对导线串扰预测模型的影响因子进行相关性分析,降低了模型的自变量维度。简化后的模型预测具有更好的实用性。