论文部分内容阅读
为了提高电力系统短期负荷预测的准确度,采用模糊聚类分析的方法对已知负荷数据、日类型、温度和天气类型等影响短期负荷预测的相关因素进行聚类分析,选用同类特征数据作为神经网络的输入,对径向基函数神经网络进行训练,得到一组预测值,从而实现电力系统短期负荷预测.实际算例表明模糊聚类分析与径向基函数神经网络相结合的短期负荷预测可以更好的满足实际预测要求,提高预测精度.