论文部分内容阅读
光伏电源在电网中的渗透率正在不断提高,准确的短期光伏发电预测有利于保障高比率光伏电源接入的电网安全稳定运行。为解决传统预测算法在学习周期波动规律上的不足,提出了基于长短期记忆神经网络的光伏发电预测模型。首先对长短期记忆神经网络的结构和特征进行了介绍和总结。其次,利用相关性分析从天气状态数据中筛选出光伏发电量的影响因素,由此作为模型的输入。接着,以小批梯度下降算法优化长短期记忆神经网络的训练过程。最后采用光伏电站的典型日发电预测实验来验证提出的模型。实验结果表明所提出的算法能够较好的预测光伏电站不同季节的日