论文部分内容阅读
考虑一类带有非线性边界条件的四阶微分边值问题{u(4)(t)=f(t,u(t)),t∈(0,1),u(0)=u″(0)=u?(1)=0,u'(1)+C(u(1))u(1)=0,其中f:[0,1]×R→[0,∞)满足L1-Carathéodory条件,C:[0,∞)→[0,∞)连续.通过对该问题格林函数性质的分析,运用Leggett-Williams不动点定理获得了该问题多个正解的存在性,最后举例验证所获定理的有效性.