论文部分内容阅读
针对桥梁健康监测系统中的数据流异常问题,提出一种基于微簇的数据流异常检测框架。首先对原始采集信号进行数据合并、缺失值填补等预处理;由于监测系统各传感器测点数据间存在一定的关联,利用主成分分析法提取桥梁主要特征参数,去除重叠信息;利用密度聚类算法把数据流转换成微簇,进行微簇的实时生成,并根据微簇更新机制进行微簇维护,对数据流进行分类。通过对湖北某大桥监测数据的实验表明,该方法具有较好的异常识别能力,可以自适应概念漂移现象。