基于谱系聚类的全球各国新冠疫情时间序列特征分析

来源 :地球信息科学学报 | 被引量 : 0次 | 上传用户:huangom444
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
COVID-19暴发以来,世界各国疫情呈现出不同的时序特点,研究不同国家疫情发展模式的特点,揭示其背后的主导因素,可为未来防控策略提供参考。为了揭示不同国家疫情时间序列之间的异同,本文提取了主要疫情国家每日新增病例时间序列的标准差、Hurst指数、治愈率、增长时长、平均增长率、防控效率进行谱系聚类,并从经济、医疗、人文冲突方面对聚类结果进行了成因分析。结果表明,全球疫情发展模式可分为3大类:C型、S型和I型。C型国家时间序列的特点是持续波动上涨,治愈率较低,原因是其人文冲突不利于疫情防控,经济医疗资
其他文献
秦岭位于暖温带与亚热带交界处,也是中国南北地理分界线,秦岭南北坡植被对干湿变化响应敏感性,可以折射出暖温带、亚热带地区主要植被类型对干湿变化的响应规律和机制特征,对深入理解不同气候带植被变化规律具有重要意义。本文利用秦岭山地32个气象站点的气象数据和MODIS NDVI时间序列数据集,探讨了2000—2018年秦岭南北坡NDVI和SPEI时空变化特征,揭示了南北坡植被对干湿变化响应敏感性及其空间差
2020年初,新型冠状病毒肺炎(COVID-19)疫情席卷全国,疫情发展变化引发了社会各界的广泛关注。社交媒体平台作为网络舆情的重要载体,如何从中全面、准确挖掘分析网络舆情特征是疫情防控过程中的重要问题。本研究首先从舆情本体与客体时空关联的角度构建了疫情期间网络舆情多维分析模型,获取了2020年1月17日—3月17日多个媒体平台中新冠肺炎疫情相关的网络舆情数据;其次以疫情蔓延的视角,运用比较研究法