论文部分内容阅读
系统重要性银行是构成全球业务链的连接点,对各国各项业务的顺利进行起到不可或缺的作用,所以当其发生危机时,会直接对全球范围内的金融机构造成负面影响.学术界对如何识别中国系统重要性银行进行了很多有益尝试,由于研究方法或样本不同,得出的结论存在一定差异.有效识别此类银行是当前的热点议题.文章从系统重要性银行的度量数据出发,首先以各银行的财务报表数据和股票价格数据为研究样本.其次,在SVM-Copula集成系统基础上,利用粒子群优化算法对SVM寻找最优参数组合,进而提出了优于GARCH模型和核密度估计法的PSO-