论文部分内容阅读
设J∈Rn×n是给定的正交反对称矩阵,即JJT=JTJ=In,JT=-J.如果矩阵A∈Cn×n满足AH=-A,JAJ=AH,称A为反埃尔米特广义汉密尔顿矩阵,所有n阶反埃尔米特广义汉密尔顿矩阵的集合记为AHHCn×n.令S=A∈AHHCn×nf(A)=‖AX-B1‖2+‖YA-B2‖2={}min.本文主要利用奇异值分解、Frobenius范数的性质和矩阵自身的结构等研究了S的解,并给出了解的表达式.