基于非对称结构与长记忆的股票市场风险测度研究

来源 :管理评论 | 被引量 : 0次 | 上传用户:yanzi774
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对金融市场条件收益存在的“有偏胖尾”分布与非对称波动性特征以及长记忆特征等典型事实特征,运用ARFIMA-FIGARCH-SKST模型等来测度股市动态风险,并通过规范的返回测试检验中的LRT和DQR方法实证考察了测度模型的可靠性。得到了一些非常有价值的实证结果:有无长记忆约束的非对称结构风险模型在中国大陆沪深股市动态风险测度能力上并无实质性差异;ARFIMA-FIAPARCH-SKST模型能够准确测度股市的动态风险;股票市场极端风险的测度尤其不能放弃非对称结构的这一约束条件。 Aiming at the typical fact features such as the distribution and asymmetric volatility of “fat tail” and the characteristics of long memory in financial market conditions, ARFIMA-FIGARCH-SKST model is used to measure the dynamic risk in the stock market. Through the standard return The LRT and DQR methods in the test test empirically examine the reliability of the measurement model. Some very valuable empirical results are obtained: the asymmetric structural risk model with or without long memory constraints has no substantial difference in the dynamic risk measurement ability of the Shanghai and Shenzhen stock markets in China; the ARFIMA-FIAPARCH-SKST model can accurately measure the stock market dynamics Risk; the measurement of extreme risk in the stock market can not, in particular, give up this constraint on asymmetric structures.
其他文献
长芦盐场,历史久远,盐产丰富,是北洋政府时期中国七大重要海盐产区之一。芦盐主要行销直隶、河南两省引岸。长芦私盐,历史久远,种类多样。按照私盐产生的根本原因,可分为“体制内私