论文部分内容阅读
针对高铁闸机智能监控行人检测系统中较高的实时性要求,提出一种改进的基于梯度直方图(HOG)特征与AdaBoost分类的行人检测算法。首先对图像样本提取HOG特征,进行Gentle AdaBoost分类训练,得到高检测率的强分类器;然后对待测图像进行垂直边缘预处理,根据行人图像与非行人图像的边缘对称性特征,排除大量非行人窗口;最后对剩余窗口提取HOG特征,依据训练出的AdaBoost分类器检测HOG特征向量,判断窗口是否含有行人。实验结果表明:改进的行人检测算法比原算法计算量少,能够在保证原有准确率的