论文部分内容阅读
从复杂网络角度出发,基于时间序列数据构建了人工智能在线翻译搜索指数的网络模型,并根据我国实际数据分析其网络结构特征。研究结果表明:在线翻译搜索指数虽然呈现出显著的波动特征,但大部分时间仍以小波动为主;在线翻译网络的最短路径长度分布近似呈偏态分布,网络中从一个符号到另一个符号的转换平均需要3个中间符号;波动性较小的符号具有较大的聚类系数;在线翻译整体呈下降趋势,经历了从早期不成熟到逐渐成熟的过程。