论文部分内容阅读
【目的】神经网络模型能避免林分生物量模型建模时自变量共线性与异方差问题,研究多层感知机在林分生物量模型中的应用,为森林经营单位、区域生物量和碳储量的估算提供方法和依据。【方法】以长白落叶松人工林为研究对象,利用吉林省一类清查固定样地的917组数据,分别建立了基于传统的对数转化后线性模型和神经网络多层感知机的地上生物量和总生物量模型。使用AIC、决定系数(R~2)、均方根误差(RMSE)、相对均方根误差(RMSEr)和平均绝对误差(MAE)来评价模型。【结果】估计精度最高的模型是输入单元为林分平均胸径(D)