论文部分内容阅读
针对化工过程软测量模型的多样性,提出基于一种加权模糊聚类方法的多模型建模方法。将输入向量与输出的相关性作为加权系数,构建加权模糊聚类算法,对样本空间的输入数据进行聚类,然后用与输入变量对应的子模型进行输出估计,子模型输出作为系统模型的最终输出。该方法能够实现对输入数据更加合理的划分,提高软测量模型的精度。将该方法应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了该方法的可行性和有效性。