论文部分内容阅读
针对织物缺陷检测时传统人工的误检率、漏检率较高问题,提出一种应用深度卷积神经网络的色织物缺陷检测算法。因织物图像采集过程中含有较多噪声且信噪比较低,先对缺陷织物进行最优尺寸高斯滤波,有效滤除细节噪声;再根据织物图像特征建立深度卷积神经网络,利用径向基神经网络的非线性映射能力作用于卷积神经网络,并通过反向传播算法调整权值参数,获取无缺陷样本与训练样本之间的映射函数;最后,利用映射函数及特征字典重构图像并提取特征,根据Meanshift算法分割缺陷,确定缺陷位置。结果表明:应用深度卷积神经网络的缺陷检测