论文部分内容阅读
针对复合电能质量扰动分类问题,提出了一种基于稀疏分解的分类新方法。该方法通过构建正余弦字典、脉冲字典将电能质量扰动信号分解为近似部分和细节部分,并从中提取了8个特征量。将特征向量输入改进支持向量机中可实现30种复合扰动的准确分类。基于MATLAB生成数据和真实电网数据的仿真结果表明:针对稀疏分解得到的特征向量,改进支持向量机的分类精度高于BP网络和极限学习机;文中方法对单一扰动及复合扰动均有较强的分类能力,且具有一定的抗噪声能力。