论文部分内容阅读
为改善单帧降质图像的分辨率水平,提出了一种新的基于稀疏表示的学习法超分辨率图像重构方法。针对信号在既定的欠定超完备字典下的非稀疏性问题,采用光滑的递减函数逼近L0范数以避免对稀疏度先验的依赖,从而实现待重构图像块的有效稀疏表示,同时通过梯度下降的迭代优化获得稳定的收敛解。与双立方插值相比,图像的三倍超分辨实验显示,图像峰值信噪比(PSNR)提高2dB,框架相似性(SSIM)改善0.04,重构图像剔除了更多的模糊退化及边缘伪迹。该方法适于单帧降质图像的超分辨率增强。