论文部分内容阅读
Translocation of previously accumulated nitrogen and carbohydrates from vegetative tissue of the wheat plant is a major assimilate source for grain filling. This study was conducted to examine genotype differences in nitrogen and fructan translocation and their relationships to grain yield and protein content. Effects indicated that significant genotype differences existed for nitrogen accumulation at anthesis and fructan at milk stage and their translocation. Two high protein genotypes, Cunningham and PST90-19, accumulated more nitrogen before anthesis and had greater nitrogen translocation, but lower post-anthesis nitrogen uptake,than two low protein genotypes, SUN109A and TM56. Among plant parts, leaves were the major storage for tissue nitrogen and provided the overwhelming proportion of the total nitrogen translocation, whereas for fructan accumulation and translocation it was the stems. The two high protein genotypes had a higher percentage of their grain nitrogen derived from nitrogen translocation, while for the two low protein ones, it was from postanthesis nitrogen uptake and assimilation. Increasing nitrogen application increased nitrogen accumulation and translocation, but decreased fructan accumulation and translocation. High grain protein content was associated with high nitrogen translocation from leaves, stems and the total plant, while high grain yield was related to high fructan translocation from stems and the total plant. Fructan translocation was negatively correlated to grain protein content. Nitrogen and fructan translocation were not correlated with each other.