论文部分内容阅读
目的:利用逻辑回归分析识别冠心病发作的危险因素,使用常见机器学习算法构建冠心病风险预测模型,为冠心病的早期预防与筛查提供理论参考。方法:通过对Kaggle发布的冠心病数据进行预处理和特征筛选后进行逻辑回归分析识别主要危险因素,选用逻辑回归、支持向量机、线性判别分析、决策树和随机森林5种常见机器学习算法进行冠心病发病预测。结果:性别、年龄、平均每日吸烟量、总胆固醇水平、收缩压和血糖水平是10年内冠心病发作的主要危险因素;选用的5种机器学习算法准确率与稳定性良好;与基于统计的线性判别分析相比,决策树与随机森林