论文部分内容阅读
针对NN(nearest neighbor)和kNN(k-nearest neighbor)方法在标记样本较少时,分类正确率不高的缺陷,根据人脑分类样本时,自觉地利用未标记样本的半监督学习机理,提出一种人脑半监督学习机理分类方法。该方法利用未标记样本间的近邻关系,减少了标记样本数量对分类正确率的影响程度。在MNIST手写体数字库和ORL人脸库上的样本分类实验表明,在标记样本数较少的情况下,该方法的分类正确率比NN和kNN方法高得多。