论文部分内容阅读
摘要: 为了解决噪声源识别中存在的识别精度不高、分辨率受限、对测量条件要求高等问题,提出了基于源强声辐射模态的噪声源识别方法。该方法首先计算结构的源强声辐射模态矩阵和声场分布模态矩阵,然后利用声场中测得的声压数据向量与结构声场分布模态矩阵的关系求出声辐射模态展开系数向量,最后通过声辐射模态矩阵和声辐射模态展开系数向量的积就可得到结构的源强分布,从而达到对噪声源识别的目的。该方法利用较少的测量点可以获得较高分辨率和识别精度。通过平板振动仿真和音箱实验验证了该方法对平面结构噪声源识别的有效性。关键词: 噪声源识别; 源强; 声辐射模态; 声场分布模态
中图分类号: O422.6文献标识码: A文章编号: 10044523(2014)04053908
引言
传统的噪声源识别定位方法主要有模态分析法、统计能量法、以有限元和边界元为代表的数值方法等。模态分析方法一般仅适于低频分析,高频分析时计算结果误差很大,该方法一般不用于复杂结构的分析[1]。边界元等数值计算方法虽然可以分析中高频的噪声源,但高频时计算效率低,计算量巨大,且奇异性和特征波数处解的非唯一性需要特殊处理[2,3]。统计能量法可以解决中高频振动问题[4],但该方法中各子系统的损耗因子在实际中获取非常困难,且该方法在低频段计算精度很差。
信号处理技术的飞速进步促进了基于阵列测量的识别噪声源技术的快速发展。这些技术主要包括声强分布法、近场声全息、波束形成和逆频率响应函数法等。声强分布法虽然具有较好的精度,对低、中、高频都有很好的识别效果。但由于使用一个或几个声强探头逐点测量,因此只能对稳态声源和非移动声源进行分析[5]。基于FFT的近场声全息方法具有很高的精度和计算速度,可获得不受波长限制的高分辨率,但该方法要求阵列必须是规则网格阵列且阵列面积要远大于被测面[6]。波束形成方法可用于实际工程中远距离和中高频信号的测量处理,适用于稳态、瞬态和运动声源,但其分辨精度受波长限制,尤其是低频信号的分辨率更低[7]。逆频率响应函数法是通过建立噪声源与声场测点之间的频响函数关系模型来进行噪声源识别[8]。毕传兴等提出的分布源边界点法可以解决上述方法中存在的问题,但该方法中特解源的构造问题没有很好的解决[9]。
鉴于上述主要噪声源识别方法各自存在的局限性,本文利用源强声辐射模态理论建立了一种复杂结构噪声源识别方法,该方法对阵列的要求没有基于FFT近场声全息那样严格,可以利用较少的测量传声器获得不受波长限制的较高分辨率和精度,在测量面面积等于或小于源面,测点数目较少条件下也可获得较好的识别效果,尤其适用于中低频结构噪声源识别。
结论
文章首先建立了源强声辐射模态理论,然后利用源强声辐射理论解决了结构噪声源识别问题,给出了利用源强声辐射模态、声场分布模态矩阵和声场测量数据向量识别结构噪声源的公式。简支平板仿真实验表明:在测量面与源面相等时,该方法就可以获得较高的识别精度,且计算速度较快,可以解决测点较少时噪声源识别的问题。当声场分布模态矩阵病态时需要进行正则化处理;该方法的识别精度随着信噪比的降低和测量面与源面距离的增加而降低。音箱实验进一步验证了利用源强声辐射理论解决噪声源识别问题是有效的。
参考文献:
[1]杨建, 左言言, 常庆斌. 城市轨道车辆模态分析与噪声预测[J]. 噪声与振动控制, 2011,31(3):76—79.
Yang Jian, Zuo Yanyan, Chang Qingbin. Analysis of vibration modes and prediction of interior noise of urban railway vehicle[J]. Noise and Vibration,2011,31(3):76—79.
[2]Seybert A F, Cheng C Y R, Wu T W. The solution of coupled interior/exterior acoustic problems using the boundary element method[J]. J.Acoust.Soc.Am., 1990, 88(3):1 612—1 618.
[3]Chcrtock G. Sound radiation from vibrating surfaces[J]. J.Acoust.Soc.Am., 1964, 36(7):1 305—1 313.
[4]Richard H L, Richard G D. Theory of Application of Statistical Energy Analysis (Second Edition)[M]. ButterworthHeinemann, 1995.
[5]He Zuoyong, He Yuanan, Shang Dejiang. Error analysis and calibration for underwater sound intensity measuring system[J]. Chinese Journal of Acoustics, 2000, 19(3):193—206.
[6]毛荣富. 设备噪声源识别与定位的近场声全息技术研究[D]. 武汉:海军工程大学, 2010.
Mao Rongfu. Study on nearfield acoustic holography in source identification & localization[D]. Wuhan: Naval University of Engineering, 2010.
[7]Christensen J J, Hald J. Beamforming[J]. B & K Technical Review, 2004,1:1—31. [8]Dumbacher S, Blough J, Hallman D, et al. Source identification using acoustic array techniques[A]. Proceedings of the SAE Noise and Vibration Conference[C]. Traverse City, MI, 1995,(2): 1 023—1 035.
[9]毕传兴, 袁艳, 贺春东,等. 基于分布源边界点的局部近场声全息技术[J]. 物理学报, 2010, 59(12): 8 646—8 654.
Bi Chuanxing, Yuan Yan, He Chundong,et al. Patch nearfield acoustic holography based on the distributed source boundary point method[J]. ACTA PHYSICA SINICA, 2010, 59(12): 8 646—8 654.
[10]Williams E G. Sound Radiation and Nearfield Acoustical Holograph[M]. London: Academic Press, 2001.
[11]Song L, Koopmann G H, Fahnline J B. Active control of the acoustic radiation of a vibration structure using a superposition formulation[J]. J. Acoust. Soc. Am., 1991, 69(6):2 786—2 794.
[12]Elliott S J. Radiation modes and the active control of sound power[J]. J. Acoust. Soc. Am., 1995, 94(4):2 194—2 204.
[13]Williams E G. Regularization methods for nearfield acoustical holography[J]. J. Acoust. Soc. Am., 2001,110(4):1 976—1 988.
[14]Hansen P C. Regularization tools: A Matlab package for analysis and solution of discrete illposed problems[J]. Numerical Algorithms, 1994, 6: 189—194.
[15]刘超. 超声层析成像的理论与实现[D]. 杭州: 浙江大学, 2003.
Liu chao. The theory and realization of ultrasound tomography[D]. Hangzhou: Zhejiang University, 2003.
[16]Hansen P C,O’Leary D P. The use of the Lcurve in the regularization in the discrete illposed problem [J]. SIAM J. Sci. Stat., 1993, 14: 1 487—1 503.
[17]Williams E G, Maynard J D. Numerical evaluation of the Rayleigh integral for planar radiators using the FFT[J]. J.Acoust.Soc.Am., 1982, 72(6):2 020—2 030.
The method of identification of the planar noise source based on source
strength acoustic radiation modes
NIE Yongfa1,2, ZHU Haichao1,2
(1.Institute of Noise & Vibration, Naval University of Engineering, Wuhan 430033,China;
2.National Key Laboratory on Ship Vibration & Noise, Wuhan 430033,China)
Abstract: To solve the problems of the limited identification accuracy, the poor resolution and the strict measurement requirement existed within the process of the noise source identification, a method based on source strength distribution combined with acoustic radiation modes is proposed. Firstly, both of the acoustic radiation modes and the field distribution modes based on the source strength are obtained, then the expansion coefficients are determined by the measured pressure vector and the corresponding structural sound field distribution modes matrix. Finally, the structure noise source is identified by means of the product of acoustic radiation modes matrix and expansion coefficients vector of acoustic radiation modes vector. High resolution and identification accuracy can be obtained via the presented method, which is validated by the simulation results and the experimental results.Key words: noise source identification; source strength; acoustic radiation modes; sound field distribution modes作者简介: 聂永发(1978—),男,博士研究生。电话:13476046928; Email:Yongfnie@163.com
通讯作者: 朱海潮(1963—),男,教授,博士生导师。电话:13707137661;Email:haiczhu@163.com
中图分类号: O422.6文献标识码: A文章编号: 10044523(2014)04053908
引言
传统的噪声源识别定位方法主要有模态分析法、统计能量法、以有限元和边界元为代表的数值方法等。模态分析方法一般仅适于低频分析,高频分析时计算结果误差很大,该方法一般不用于复杂结构的分析[1]。边界元等数值计算方法虽然可以分析中高频的噪声源,但高频时计算效率低,计算量巨大,且奇异性和特征波数处解的非唯一性需要特殊处理[2,3]。统计能量法可以解决中高频振动问题[4],但该方法中各子系统的损耗因子在实际中获取非常困难,且该方法在低频段计算精度很差。
信号处理技术的飞速进步促进了基于阵列测量的识别噪声源技术的快速发展。这些技术主要包括声强分布法、近场声全息、波束形成和逆频率响应函数法等。声强分布法虽然具有较好的精度,对低、中、高频都有很好的识别效果。但由于使用一个或几个声强探头逐点测量,因此只能对稳态声源和非移动声源进行分析[5]。基于FFT的近场声全息方法具有很高的精度和计算速度,可获得不受波长限制的高分辨率,但该方法要求阵列必须是规则网格阵列且阵列面积要远大于被测面[6]。波束形成方法可用于实际工程中远距离和中高频信号的测量处理,适用于稳态、瞬态和运动声源,但其分辨精度受波长限制,尤其是低频信号的分辨率更低[7]。逆频率响应函数法是通过建立噪声源与声场测点之间的频响函数关系模型来进行噪声源识别[8]。毕传兴等提出的分布源边界点法可以解决上述方法中存在的问题,但该方法中特解源的构造问题没有很好的解决[9]。
鉴于上述主要噪声源识别方法各自存在的局限性,本文利用源强声辐射模态理论建立了一种复杂结构噪声源识别方法,该方法对阵列的要求没有基于FFT近场声全息那样严格,可以利用较少的测量传声器获得不受波长限制的较高分辨率和精度,在测量面面积等于或小于源面,测点数目较少条件下也可获得较好的识别效果,尤其适用于中低频结构噪声源识别。
结论
文章首先建立了源强声辐射模态理论,然后利用源强声辐射理论解决了结构噪声源识别问题,给出了利用源强声辐射模态、声场分布模态矩阵和声场测量数据向量识别结构噪声源的公式。简支平板仿真实验表明:在测量面与源面相等时,该方法就可以获得较高的识别精度,且计算速度较快,可以解决测点较少时噪声源识别的问题。当声场分布模态矩阵病态时需要进行正则化处理;该方法的识别精度随着信噪比的降低和测量面与源面距离的增加而降低。音箱实验进一步验证了利用源强声辐射理论解决噪声源识别问题是有效的。
参考文献:
[1]杨建, 左言言, 常庆斌. 城市轨道车辆模态分析与噪声预测[J]. 噪声与振动控制, 2011,31(3):76—79.
Yang Jian, Zuo Yanyan, Chang Qingbin. Analysis of vibration modes and prediction of interior noise of urban railway vehicle[J]. Noise and Vibration,2011,31(3):76—79.
[2]Seybert A F, Cheng C Y R, Wu T W. The solution of coupled interior/exterior acoustic problems using the boundary element method[J]. J.Acoust.Soc.Am., 1990, 88(3):1 612—1 618.
[3]Chcrtock G. Sound radiation from vibrating surfaces[J]. J.Acoust.Soc.Am., 1964, 36(7):1 305—1 313.
[4]Richard H L, Richard G D. Theory of Application of Statistical Energy Analysis (Second Edition)[M]. ButterworthHeinemann, 1995.
[5]He Zuoyong, He Yuanan, Shang Dejiang. Error analysis and calibration for underwater sound intensity measuring system[J]. Chinese Journal of Acoustics, 2000, 19(3):193—206.
[6]毛荣富. 设备噪声源识别与定位的近场声全息技术研究[D]. 武汉:海军工程大学, 2010.
Mao Rongfu. Study on nearfield acoustic holography in source identification & localization[D]. Wuhan: Naval University of Engineering, 2010.
[7]Christensen J J, Hald J. Beamforming[J]. B & K Technical Review, 2004,1:1—31. [8]Dumbacher S, Blough J, Hallman D, et al. Source identification using acoustic array techniques[A]. Proceedings of the SAE Noise and Vibration Conference[C]. Traverse City, MI, 1995,(2): 1 023—1 035.
[9]毕传兴, 袁艳, 贺春东,等. 基于分布源边界点的局部近场声全息技术[J]. 物理学报, 2010, 59(12): 8 646—8 654.
Bi Chuanxing, Yuan Yan, He Chundong,et al. Patch nearfield acoustic holography based on the distributed source boundary point method[J]. ACTA PHYSICA SINICA, 2010, 59(12): 8 646—8 654.
[10]Williams E G. Sound Radiation and Nearfield Acoustical Holograph[M]. London: Academic Press, 2001.
[11]Song L, Koopmann G H, Fahnline J B. Active control of the acoustic radiation of a vibration structure using a superposition formulation[J]. J. Acoust. Soc. Am., 1991, 69(6):2 786—2 794.
[12]Elliott S J. Radiation modes and the active control of sound power[J]. J. Acoust. Soc. Am., 1995, 94(4):2 194—2 204.
[13]Williams E G. Regularization methods for nearfield acoustical holography[J]. J. Acoust. Soc. Am., 2001,110(4):1 976—1 988.
[14]Hansen P C. Regularization tools: A Matlab package for analysis and solution of discrete illposed problems[J]. Numerical Algorithms, 1994, 6: 189—194.
[15]刘超. 超声层析成像的理论与实现[D]. 杭州: 浙江大学, 2003.
Liu chao. The theory and realization of ultrasound tomography[D]. Hangzhou: Zhejiang University, 2003.
[16]Hansen P C,O’Leary D P. The use of the Lcurve in the regularization in the discrete illposed problem [J]. SIAM J. Sci. Stat., 1993, 14: 1 487—1 503.
[17]Williams E G, Maynard J D. Numerical evaluation of the Rayleigh integral for planar radiators using the FFT[J]. J.Acoust.Soc.Am., 1982, 72(6):2 020—2 030.
The method of identification of the planar noise source based on source
strength acoustic radiation modes
NIE Yongfa1,2, ZHU Haichao1,2
(1.Institute of Noise & Vibration, Naval University of Engineering, Wuhan 430033,China;
2.National Key Laboratory on Ship Vibration & Noise, Wuhan 430033,China)
Abstract: To solve the problems of the limited identification accuracy, the poor resolution and the strict measurement requirement existed within the process of the noise source identification, a method based on source strength distribution combined with acoustic radiation modes is proposed. Firstly, both of the acoustic radiation modes and the field distribution modes based on the source strength are obtained, then the expansion coefficients are determined by the measured pressure vector and the corresponding structural sound field distribution modes matrix. Finally, the structure noise source is identified by means of the product of acoustic radiation modes matrix and expansion coefficients vector of acoustic radiation modes vector. High resolution and identification accuracy can be obtained via the presented method, which is validated by the simulation results and the experimental results.Key words: noise source identification; source strength; acoustic radiation modes; sound field distribution modes作者简介: 聂永发(1978—),男,博士研究生。电话:13476046928; Email:Yongfnie@163.com
通讯作者: 朱海潮(1963—),男,教授,博士生导师。电话:13707137661;Email:haiczhu@163.com