论文部分内容阅读
BP神经网络的PID控制器依赖于灵敏度信息实现参数在线调整,获得灵敏度信息非常重要。利用符号函数来获得灵敏度信息,计算不精确,利用RBF对被控对象在线辨识获得灵敏度信息,收敛速度慢。提出了一种新方法,即在RBF神经网络辨识的基础上,当误差较大时,利用符号函数获得灵敏度信息,以加速收敛;当误差较小时,利用RBF神经网络在线辨识获得灵敏度信息,以提高控制精度。仿真结果表明算法收敛速度快、精度高,控制效果优于符号函数实现的参数调整方法。