论文部分内容阅读
根据电力负荷的特点,在考虑天气、日类型、实际历史负荷等因素对预测负荷影响的基础上,提出了一种基于竞争分类的神经网络短期负荷预测方法.应用神经网络的竞争学习对相关数据进行分类,将历史数据分成若干类别从而找出与预测日同类型的预测类别.利用相应的BP算法对未来24小时负荷进行短期预测,该方法充分发挥了神经网络处理非线性问题的能力.结果表明,该方法取得了较满意的预测精度.