论文部分内容阅读
Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior(by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below A_(c1) temperature of P91 steel while it was above A_(c3) with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.
Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep tests (by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below A_ (c1 ) temperature of P91 steel while it was above A_ (c3) with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.