S Zorb精制汽油辛烷值优化模型及工业应用

来源 :石油炼制与化工 | 被引量 : 0次 | 上传用户:mackolxsbou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对S Zorb精制汽油研究法辛烷值(RON)损失较大的问题,以某石化企业S Zorb装置近3年的运行数据为基础,采用最大互信息系数(MIC)和Pearson相关系数并结合BP神经网络,从包括原料油性质、吸附剂性质、产品性质和操作变量在内的273个变量中筛选出22个建模变量,构建了结构为21-14-1的汽油RON预测模型,并进行验证.结果表明:建立的预测模型具有较好的拟合优度和泛化能力,其对测试集的平均绝对误差(MAE)和决定系数(R2)分别为0.1163、0.9601.在此基础上,针对具体原料性质,采用遗传算法(GA)优化操作变量,发现该模型通过优化能有效降低汽油RON损失;工业试验验证结果表明,通过模型优化操作变量可使汽油RON损失降低25%.
其他文献
中国石油石油化工研究院针对催化裂化原料预处理所研发的PHF-311加氢催化剂,于2019年9月在中国石油独山子石化分公司1.0 Mt/a蜡油加氢装置上成功应用.标定结果表明,在反应温度358.5℃、反应压力10.9 MPa、氢油体积比699、主剂体积空速0.94 h-1的工艺条件下,加氢蜡油的硫质量分数为493μg/g,氮质量分数为474.8μg/g,残炭为0.15%,是优质的催化裂化原料;加氢柴油的硫质量分数为6.2μg/g,氮质量分数为30.8μg/g,可作为柴油调合组分.从装置运行情况可以看出,PH
渣油中的金属元素主要存在于胶质、沥青质等极性组分中.利用极性组分的带电特性,提出通过施加电场的方式来强化渣油脱金属反应,从而改善渣油性质,提高渣油综合利用价值.针对一种减压渣油,选取正庚烷为稀释溶剂,在电场作用下,考察了剂油质量比、电场强度及电场布置方式对渣油中Fe,Ca,Ni,V脱除的影响.结果表明,提高剂油质量比、提高电场强度、采用合理的电场布置方式均有利于渣油中金属的脱除.电场的强化作用促进了渣油中在自然沉降过程中较难析出、沉降的富含金属组分的脱除;在电场作用下,富含Ni、V的重质组分沿电场方向向罐
影响固定床渣油加氢装置长周期运行的因素有其复杂性、系统性、规律性.不同类型原料的固定床渣油加氢反应特性不同,硫含量较低、氮含量较高的渣油原料的残炭前身物加氢反应与硫含量较高、氮含量较低的渣油原料相比相对较困难;原料中的Fe和Ca含量、工艺条件、反应物流分配及原料中减压渣油的比例也会影响固定床渣油加氢装置的运行周期.为了实现较长的运行周期,所采取的技术措施包括:开发与原料相适应的催化剂及催化剂级配技术;采用高效分配器;提高装置氢分压及增设反应器降低空速;开发保护反应器的相关技术;根据炼油厂类型及固定床渣油加
以氢氧化铝干胶为原料,采用等体积浸渍法制备了NiO/Al2 O3催化剂;以溴指数为3836 mgBr/(100 g)的催化重整生成油评价NiO/Al2 O3催化剂的选择性加氢脱烯烃性能.考察了载体焙烧温度和NiO负载量对NiO/Al2 O3催化剂选择性加氢脱烯烃性能的影响.结果表明:载体焙烧温度为650℃时,采用NiO负载量(w)为25%的催化剂,在反应压力为1.0 MPa、体积空速为8 h-1、氢油体积比为25:1、反应温度为120℃的条件下,加氢生成油溴指数小于100 mgBr/(100 g),芳烃损
近些年来零至个位数的投资回报迫使欧洲炼油商去投资开发低碳产品.除了生物燃料、氢气和其他低碳化机会外,废聚合物的循环利用也成为投资热点,这对于消除全球近300 Mt/a的废塑料至关重要,同时炼油行业也可借此发展循环经济.此外,石化产品需求不断增加,同时也刺激了对废塑料基聚合物的需求.废聚合物循环利用有助于下游加工商参与到可持续工业运营中,同时也为那些过去不必生产聚合物,但拥有配套基础设施的公司提供了盈利机会.
为了解抗生素对石油降解菌的生态效应及微生物对典型抗生素毒害作用的应激响应机制,通过开展不同浓度典型抗生素对高效石油降解菌铜绿假单胞菌(ZS1)的毒性试验,研究了菌体细胞在3种不同种类抗生素(土霉素、红霉素、磺胺嘧啶)作用下的生长及毒理指标.结果表明,3种抗生素对ZS1有不同的抑菌效果,其中土霉素对ZS1活性的抑制程度最强,抑制率随着土霉素浓度的增大而明显上升,有显著的浓度-效应关系.研究了ZS1抗氧化酶(过氧化氢酶、过氧化物酶、超氧化物歧化酶)对抗生素的响应机制,结果表明ZS1受到污染时会通过产生抗氧化酶
通过添加盐酸和乙酸调节剂成功合成了含有缺陷位点的UiO-66-HCl和UiO-66-HAC催化剂.X射线衍射、傅里叶变换红外光谱、热重分析、扫描电镜、N2吸附-脱附和NH3程序升温脱附等表征结果表明,催化剂的结晶度、粒径、形貌和孔结构得到优化,酸量提高.丁烯原料的评价结果表明:添加调节剂制备的含有较多缺陷位点的UiO-66显著提高了2-丁烯双键异构生成1-丁烯的催化性能;当反应温度为360℃、体积空速为12 h-1时,UiO-66-HAC催化丁烯双键异构生成1-丁烯的收率高达12.7%,选择性高达97%.
研究了天然气合成润滑油基础油(简称基础油)与其他3种基础油的混合油黏度调合数学模型的准确度和适用性.测定了天然气合成基础油GTL420分别与合成基础油PAO10、矿物基础油500N和煤基费-托合成基础油CTL10按不同比例调合的混合基础油在40℃和100℃时的运动黏度,对黏度调合模型进行优化.基于偏差率、均方根误差、残差平方和以及决定系数对模型进行评价.结果表明:Arrhenius方程在3种调合体系中的偏差率最大,不能精确描述混合基础油的真实运动黏度;Lederer-Roegiers Sr方程和Grunb
建立了废塑料热解油的固相萃取前处理方法,使用硅胶、负载银-氧化铝的双固相萃取柱分离得到饱和烃、烯烃和芳烃组分,并分别进行气相色谱分析和质谱分析;根据沸点与保留时间的关系,将得到的气相色谱图与总离子流色谱图划分为柴油馏分和蜡油馏分(VGO),结合气相色谱和质谱数据可得到柴油和VGO馏分的烃类组成,实现了宽沸点废塑料热解油中柴油及VGO馏分的烃类组成分析.
聚苯乙烯(PS)的化学回收方法,通常是利用解聚方法产生粗热解油,再通过苯乙烯纯化过程,获得符合ASTM标准的苯乙烯单体,以用于下游聚合.目前聚苯乙烯化学回收的产业链主要包括分类、解聚、苯乙烯纯化3 个步骤.