论文部分内容阅读
社交网络信息已被广泛的应用到传统的推荐上,一定程度上减轻了数据稀疏和冷启动问题.随着表示学习的兴起,出现了利用表示学习进行推荐的算法研究.然而社交网络过大,表示学习可扩展性差,难以在有限内存中进行计算.聚集图通过空间压缩,保留了关键的结构关系,去除次要或噪音的结构数据,便于表示学习能够有效学习图结构,从而更好地找到相似用户进行推荐.首先,利用图聚集算法同时考虑分组间及分组内的结构得到最终的聚集图;其次,在聚集图上计算随机游走的转移概率,然后选择每个具有偏差概率的后继节点并生成节点序列;最后将节点序列输入到skip-gram学习用户的潜在表示,获得节点的表示向量整合其信息到贝叶斯个性化排序模型(BPR)来解决项目排名问题.实验结果表明,该方法相比于社会化贝叶斯个性化排序(SBPR)、协同用户网络嵌入(CUNE)等基线方法在推荐任务中保持时间效率的同时有效提升了准确率、召回率和平均精度均值.