论文部分内容阅读
由于k-均值经典算法必须在聚类前随机地选择聚类的个数k,则后所得到的聚类结果会受到初始选择的聚类个数的影响。针对这个问题,根据寻找最优初值及免受孤立点影响的思想,提出了一种改进的k-均值聚类算法。实验证明改进的k-均值聚类算法在一定程度上解决了该算法对初始值的依赖,并部分减少了算法受噪声数据影响的可能。