论文部分内容阅读
为了有效去除电子鼻漂移,提出了一种基于空载条件小波包分解的漂移去除方法。对电子鼻空载数据进行小波包分解,获得小波包分解的逼近系数集;在对其进行离散度分析之后,构建了空载条件下的一种阈值函数。在此阈值函数基础上,扩展成为样本(有载)条件下的去漂移阈值函数,进而发展成有载样本的漂移剔除方法。为了检验该方法的有效性及实用性,将其应用于4种白酒的鉴别中。对4种白酒电子鼻数据按测试时间顺序生成训练集和测试集,线性的Fisher判别分析结果表明,训练集、测试集数据处理后的鉴别正确率均得到了提高,最低提高值为23