论文部分内容阅读
首先研究了非线性随机动力系统所对应的Fokker-Planck-Kolmogorov(FPK)方程.其次,讨论了微分方程的三阶TVD Runge-Kutta关于时间的离散差分格式以及关于空间离散的五阶Weighted Essentially nonOscillatory(WENO)差分格式,并将其相结合,得到FPK方程的TVD Runge-Kutta WENO差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.