WSN中利用XGBoost和加权自适应HFLMS的数据约减组合预测方法

来源 :计算机应用研究 | 被引量 : 2次 | 上传用户:liwulai11111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对无线传感器网络(WSN)中能量、带宽和内存等各种资源的限制问题,提出了一种XGBoost结合加权自适应分层分数最小均方误差(hierarchical fractional least-mean-square,HFLMS)的数据约减组合预测方法。首先,利用XGBoost方法对损失函数进行了二阶的泰勒展开,权衡模型的复杂度和损失函数的下降速度,实现了资源限制的稳定预测;然后提出自适应HFLMS滤波器实现WSN数据约简的传输,并基于误差估计来预测所感测的数据,有效降低了WSN中的能量约束;最后,利用两
其他文献