论文部分内容阅读
传统的Mean shift算法虽然具有简单快速的特点,但在目标被遮挡的情况下无法进行有效的跟踪。与此同时,以Monte Carlo随机模拟理论为基础的粒子滤波虽然可以很好地解决这一问题,但是由于结果的好坏与粒子的数目成正比,计算耗时无法满足系统的实时性要求。该文基于颜色直方图分布,引入自适应选择粒子样本数的采样策略,有效地融合传统Mean shift算法的简单快速和粒子滤波跟踪算法的抗遮挡的优点,在保证跟踪效果的同时减少了跟踪的总体时间花费,有效提高了设计的跟踪系统的实时性。实验证明,该方法在实际的