论文部分内容阅读
Bcklund 变换在非线性演化方程的研究中起着重要作用。由于由方程的B(?)cklund 变换出发,推导方程的无穷多个守恒律、解的非线性叠加公式以及孤立子解,往往需要用到该变换所含的任意参数,因而讨论不同参数的B(?)cklund 变换之间的关系是很有意义的。本文在Hirota 双线性形式下进行这方面的讨论。文中建立了高阶双线性变形Korteweg—de Vries(简称KdV)方程的B(?)cklund 的变换与Scale 变换的关系,证明了它们之间存在通常的Bk=S-1(k)B1S(k)型分解等式;文中还给出了这个方程的双线性形式的解的非线性叠加公式。