论文部分内容阅读
针对目标跟踪中粒子滤波算法的估计精度不高、粒子退化问题,文中提出了一种GH.RPF算法.在粒子滤波的基础上,应用高斯.厄米特滤波来产生重要密度函数,同时对重采样采用正则变换以改善采样粒子的多样’生.将该算法应用于非线性、非高斯的目标跟踪中,仿真结果表明,与标准粒子滤波及EKPF相比,该算法的滤波精度更高,具有更高的跟踪性能.