,Enhancing security of NVM-based main memory with dynamic Feistel network mapping

来源 :信息与电子工程前沿(英文版) | 被引量 : 0次 | 上传用户:seraphim
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
As promising altatives in building future main memory systems, emerging non-volatile memory (NVM) technologies can increase memory capacity in a cost-effective and power-efficient way. However, NVM is facing security threats due to its limited write endurance: a malicious adversary can wear out the cells and cause the NVM system to fail quickly. To address this issue, several wear-leveling schemes have been proposed to evenly distribute write traffic in a security-aware manner. In this study, we present a new type of timing attack, remapping timing attack (RTA), based on information leakage from the remapping latency difference in NVM. Our analysis and experimental results show that RTA can cause three of the latest wear-leveling schemes (i.e., region-based start-gap, security refresh, and multi-way wear leveling) to lose their effectiveness in several days (even minutes), causing failure of NVM. To defend against such an attack, we further propose a novel wear-leveling scheme called the ’security region-based start-gap (security RBSG)’, which is a two-stage strategy using a dynamic Feistel network to enhance the simple start-gap wear leveling with level-adjustable security assurance. The theoretical analysis and evaluation results show that the proposed security RBSG not only performs well when facing traditional malicious attacks, but also better defends against RTA.
其他文献
玉米是全球第一大谷类作物,也是我国西南地区第二大粮食作物,该区玉米需求多、缺口大,仅四川年调入量就高达500万吨。新品种的更新换代是产量增长的关键,近年来,玉米杂交种及