论文部分内容阅读
针对传统迭代最近点算法高精度低效率与正态分布变换算法高效率低精度的问题,提出了基于NDT与ICP融合的点云配准方法。首先通过NDT算法选择合适的网格参数将待匹配的点云向目标点云拉近以提高配准效率,完成粗配准,其次使用KD树加速的ICP算法求解变换矩阵以提高配准的计算效率。通过实验表明,本文方法匹配速度相比NDT算法和ICP算法有明显提高,且精度高于NDT算法。