论文部分内容阅读
线性统计模型的参数估计问题是统计学中一个“古老”而至今仍十分活跃的重要领域。其中LS估计占突出重要的地位,它既便于使用,又在一定条件下是最优线性无偏估计(BLUE);因此,倍加重视对它的研究,既研究它的广泛应用和优良性,又探讨它的不足和改进。本文在综述线性模型参数的LS估计及其优良性的基础上,重点研讨了它的各种改进。计有岭估计、压缩估计、主成分估计、Casclla估计、Bayes估计等,最后给出权估计与权概括。在一定条件下,这些改进的估计都一致优于LS估计。